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Abstract - In this paper we discuss the use of information modeling to develop information exchange standards and metrics
for test and diagnostics.  For example, fault information is being transferred from one diagnostic reasoner to another.  How
many attributes does a fault have?  One, three, fifteen?  How do these attributes relate to the fault, to diagnosis, and tests?
If both reasoners do not understand the “model” of a fault, then there will not be an information exchange.  Humans can,
when they are aware of the differences, resolve the mismatch in information.  Computer programs cannot “talk” until they
resolve small differences in conceptual information.  We present an overview of the current and future directions of the
Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE) standards.  We present a summary of
the work completed so far on the diagnostic reasoner exchange standard and on the testability metrics standard.

We address objectives, document organization, information modeling, service versus API specification, and other issues
raised by the AI-ESTATE community.  We also discuss the vision of the AI-ESTATE subcommittee in its work to integrate the
AI-ESTATE information models and projects such as testability/diagnosability assessment and test/maintenance feedback.

INTRODUCTION

The Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE) standards are
information exchange standards for test and diagnosis.  The original standards, the 1232 series, developed a
means of exchange of information between diagnostic reasoners.  As the information models for the 1232
standards were developed, it became apparent that these models could be used for standardizing testability and
diagnosability metrics.  This paper will be discussing the test and diagnosis information exchange standards
followed by the testability and diagnosability standards.  Other applications of these models will be briefly
described.

 In 1998, the third of a series of three standards was published by the IEEE addressing issues in system-level
diagnostics.  IEEE Std 1232-1995 defines the architecture of an AI-ESTATE-conformant system and has been
published as a “full-use” standard; however, this standard was published before the vision of AI-ESTATE was
fully developed.  IEEE Std 1232.1-1997 defines a knowledge and data exchange standard and was published as
a “trial-use” standard.  Trial-use indicates that it is preliminary in nature, and the standards committee is seeking
comments from organizations attempting to implement or use the standard.  In 1998, IEEE Std 1232.2-1998 was
approved.  Its publication, also as a “trial-use” standard is imminent.  This standard formally defines a set of
standard software services to be provided by a diagnostic reasoner in an open-architecture test environment.
Since it is also a trial-use standard, comment and feedback are necessary here as well.  The standards were
developed using information modeling, resulting in the definition of four information models addressing static and
dynamic aspects of the diagnostic domain.  Further, the IEEE 1232 AI-ESTATE series of standards provide the
foundation for precise and unambiguous testability and diagnosability metrics.

As systems became more complex, costly, and difficult to diagnose and repair, initiatives were started to address
these problems.  The objective of one of these initiatives, testability, was to make systems easier to test.  Early



on, this focused on having enough test points in the right places.  As systems evolved, it was recognized that the
system design had to include characteristics to make the system easier to test.  This was the start of considering
testability as a design characteristic.  As defined in MIL-STD-2165, testability is “a design characteristic which
allows the status (operable, inoperable, or degraded) of an item to be determined and the isolation of faults within
the item to be performed in a timely manner.” [1].  The purpose of MIL-STD-2165 was to provide uniform
procedures and methods to control planning, implementation, and verification of testability during the system
acquisition process by the Department of Defense (DoD).  It was to be applied during all phases of system
development—from concept to production to fielding.  This standard, though deficient in some areas, provided
useful guidance to government suppliers.  Further, lacking any equivalent industry standard, many commercial
system developers have used it to guide their activities although it was not imposed as a requirement.

In this paper, we present an overview of the current and future directions of the AI-ESTATE standards.  We
address objectives, document organization, information modeling, service versus Applications Program Interface
(API) specification, and other issues raised by the AI-ESTATE community.  We also discuss the vision of the AI-
ESTATE subcommittee in its work to integrate the AI-ESTATE information models and projects such as
testability/diagnosability assessment and test/ maintenance feedback.

A VISION FOR TEST AND DIAGNOSIS STANDARDS

Diagnosis

The vision of AI-ESTATE is to provide an integrated, formal view of diagnostic information as it exists in
diagnostic knowledge bases and as it is used (or generated) in diagnostic systems.  We assert that the whole
purpose of testing is to perform diagnosis [2].  In justifying this assumption, we rely on a very general definition of
diagnosis, derived from its Greek components (δια γιγνωσκω) meaning, “to discern apart.”  Given such a broad
definition, all testing is done to provide information about the object being tested and to differentiate some state
of that object from a set of possible states.

In support of this vision, the AI-ESTATE committee has been working on combining the existing standards into a
single, cohesive standard.  This “unified” standard provides formal specifications of all of the information models
(both for file exchange and for diagnostic processing), from which the service specifications are then derived and
specified.  The architectural framework is retained at the conceptual level to emphasize that a wide variety of
implementation models are possible that still support standard exchange of information as long as the definition
of that information is clear and unambiguous.  Thus, in a sense, the models define the architecture, and the
implementation is left entirely to the implementer.

With this vision in mind, we believe AI-ESTATE plays a central role in any test environment (thus the “All Test
Environments” part of the name).  To date, the focus of the standards has been the development of
specifications supporting diagnosis in the traditional sense of the word (i.e., fault isolation).  However, the
broader context within which AI-ESTATE is envisioned to participate involves tying diagnostic information to
explicit product behavior descriptions, assessments of the ability of testing to satisfy its requirements, and
maturation of the diagnostic process through test and maintenance information feedback.

Testability

In 1997, the AI-ESTATE committee began to work on a new standard focusing on replacing the cancelled MIL-
STD 2165.  The military standard focused on specifying the essential elements of a testability program and
explained the elements needed to define a testability program plan.  In addition, MIL-STD 2165 included the
“definition” of several testability metrics, including a testability checklist to be used to determine overall system
testability.  With the cancellation of military standards and specifications by the Perry Memo in 1994 [3], and with
the lack of specificity and clarity in MIL-STD 2165, it became evident that a replacement was necessary.



The approach being taken to develop this standard involves defining testability and diagnosability metrics based
on standard information models.  Specifically, it was found that the AI-ESTATE models provided an excellent
foundation for defining these metrics

THE AI-ESTATE ARCHITECTURE

According to IEEE Std 1232-1995, the AI-ESTATE architecture is “a conceptual model” in which “AI-ESTATE
applications may use any combination of components and intercomponent communication” [4].  On the other
hand, according to IEEE Std 1232.2-1998, AI-ESTATE includes explicit definitions of services to be provided by
a diagnostic reasoner, where the services “can be thought of as responses to client requests from the other
components of the system architecture” [5].  More specifically, “each of the elements that interface with the
reasoner will interact through [an] application executive and will provide its own set of encapsulated services to
its respective clients” [5].

Although not necessarily obvious from the standards themselves, these two “views” of the AI-ESTATE
architecture present an interesting dichotomy.  Specifically, the architecture standard provides a concept of AI-
ESTATE that permits any communication mechanism to be used between components of a test environment in
support of the diagnostics provided by that environment.  The service specification, on the other hand, seems to
cast the communication mechanism in the form of a client-server architecture.

We note that the intent of AI-ESTATE is to provide a formal, standard framework for the exchange of diagnostic
information (both static and dynamic) in a test environment.  This exchange occurs at two levels.  At the first
level, data and knowledge are exchanged through a neutral exchange format, as specified by IEEE Std 1232.1-

1997 [6].  At the second level, specified
by IEEE Std 1232.2-1998 [5]information is
exchanged as needed between software
applications within the test environment.
This information includes entities from a
model or information on the current state
of the diagnostic process.

To facilitate encapsulation of the
information and the underlying
mechanisms providing that encapsulation,
AI-ESTATE assumes the presence of an
“application executive.”  We emphasize
that this application executive need not be
a physically separate software process but

can be identified as a “view” of the software process when it involves the communication activity.  This view of
the architecture is shown in Figure 1.  In the following sections, we will provide a more detailed discussion of the
exchange and service elements of the architecture.

Data and Knowledge Exchange

ISO 10303–11 (EXPRESS) and ISO 10303–12 (EXPRESS-I) are used to define information models and
exchange formats for diagnostic knowledge [7], [8].  These international standards are being maintained by the
STEP (Standard for the Exchange of Product model data) community.  The current approach to static
information exchange within AI-ESTATE is to derive the exchange format from the formal information models as
specified in the ISO standards.

The purpose of information modeling is to provide a formal specification of the semantics of information that is
being used in an “information system.”  Specifically, information models identify the key entities of information to
be used, their relationships to one another, and the “behavior” of these entities in terms of constraints on valid
values [9].  The intent is to ensure that definitions of these entities are unambiguous.

TEST CONTROLLER(S)

DIAGNOSTIC
REASONER(S)

TEST AND MAINTENANCE
INFORMATION MANAGEMENT

CENTERAPPLICATION
EXECUTIVE

USER INTERFACE

Figure 1.  AI-ESTATE Architecture



For example, central to the test and diagnosis problem is the definition of a “test.”  If we ask a digital test
engineer what a test is, it is possible that the answer will be something like “a set of vectors used to determine
whether or not a digital circuit is working properly.”  On the other hand, if we ask a diagnostic modeler what a test
is, the answer is likely to be “any combination of stimulus, response, and a basis for comparison that can be used
to detect a fault.”

On the surface, these two definitions appear very similar; however, there is a fundamental difference.  For the
digital test engineer, there is an implicit assumption that a “test” corresponds to the entire suite of vectors.  For
the diagnostic modeler, individual vectors are tests as well.

As a similar example, the test engineer and diagnostic modeler are likely to have different definitions for
“diagnosis.”  The act of doing diagnosis, for most test engineers, corresponds to running tests after dropping off
of the “go-path.”  For the diagnostic modeler, since “no fault” is a diagnosis, the entire test process (including the
go-path) is part of doing diagnosis.

It may appear that we are “splitting hairs,” but formal definition of terms and information entities is an exercise in
splitting hairs.  Further, such hair-splitting is essential to ensure that communication is unambiguous—especially
when we are concerned with communication between software processes.  No assumption can go unstated;
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otherwise, the risk exists that something will be misunderstood.  Information models formally state all of the
assumptions.

A New Information Model

When IEEE 1232.1 was published, it was published as a “trial-use” standard to provide a period for people to
study it, attempt to implement it, and provide feedback to the AI-ESTATE committee on the ability of the
standard to satisfy the stated requirements.  Since publication, comments have been received to indicate that
ambiguity still exists in the information models.

Because of the concern that the information models are still ambiguous, the models are undergoing close
examination and modification.  It is interesting to note that much of the ambiguity has been identified in
connection with a related standard being developed by the AI-ESTATE committee—P1522 Standard for
Testability and Diagnosability Metrics and Characteristics.  AI-ESTATE’s approach to developing this new
standard involved defining the metrics based on the information models within the P1232 standard.  As we were
identifying metrics to be standardized, we discovered that the current models were incapable of supporting their
definition.

A conceptual view of the revised common element model is shown in Figure 2.  Of note in the revised model is
the addition of a context entity and the differentiation between fault and function.  Many diagnostic tools are
highly context dependent (e.g., different procedures are suggested based on the environmental conditions of the
test or the skill levels of the maintenance technicians).  In addition, several tools focus on modeling function
rather than physical faults to support modeling at the system level.  Since the distinctions among context and
type of analysis were not previously made explicit, new entities were defined to eliminate ambiguity that may
arise from different approaches and contexts for modeling.

Diagnostic Services

The approach taken to defining services in AI-ESTATE has been based on the traversal (i.e., the following of the
relationships defined between model entities to access specific pieces of information in the models) of the
information models.  The “simplest” services involve traversing the models defined in IEEE 1232.1 (i.e., the
exchange models); however, these models provide little functionality in terms of actual diagnosis.

In IEEE 1232.2, a novel use of information modeling was applied in that a dynamic information model was
specified to support dynamic services.  This model, called the “dynamic context model,” relied on dynamically
creating entities that populate the model during a diagnostic session.  In fact, as suggested by “dcm.session” and
“dcm.step” in the model shown in Figure 2, a diagnostic session is modeled as a sequence of steps instantiated
from the set of possible values specified in the static model.  Details of how the service specification is expected
to be implemented can be found in [10], [11].

One of the concerns raised by a member of the AI-ESTATE committee was whether the standard specifies a set
of services or simply an Application Programming Interface.  The claim was that the service specification must
include a behavior specification as well and that this can only be accomplished by defining a set of baseline
behaviors, perhaps through some sort of test bed.

The committee observed that people have different opinions over the difference between a service specification
and an API specification.  Many, in fact, took issue with the claim that they were different.  Further, it was
determined that including test cases to specify standard behavior was not desirable in this context due to the
wide variety of diagnostic approaches using common diagnostic knowledge.  Rather, it was believed that it was
more important for the information itself to be standardized and the specific behavior to be left to the
implementation.



Testability and Diagnosability Metrics

Testability has been broadly recognized as the “-ility” that deals with those aspects of a system that allow the
status (operable, inoperable, or degraded) or health state to be determined.  Early work in the field primarily dealt
with the design aspects such as controllability and observability.  Almost from the start this was applied to the
manufacturing of systems where test was seen as a device to improve production yields.  This has been slowly
expanded to include the aspects of field maintainability such as false alarms, isolation percentages, and other
factors associated with the burden of maintaining a system.

In the industry, many terms such as test coverage and Fraction of Fault Detection (FFD) are not precisely
defined or have multiple definitions.  Further, each diagnostic tool calculates these terms differently and
therefore the results are not directly comparable.  Some measures, such as false alarm rate, are not measurable
in field applications.  Other measures such as Incremental Fault Resolution, Operational Isolation, and Fault
Isolation Resolution appear different, but mean nearly the same thing.

Lacking well-defined testability measures, the tasks of establishing testability requirements, and predicting and
evaluating the testability of the design are extremely difficult.  This in turn makes effective participation in the
design for testability process difficult.  These difficulties will be greatly diminished by the establishment of
standard testability metrics.  An immediate benefit will come with a consistent, precise, and measurable set of
testability attributes that can be compared across systems, tools, and within iterations of a system’s design.

MIL-STD-2165 did not have precise and unambiguous definitions of measurable testability figures-of-merit and
relied mostly on a weighting scheme for testability assessment.  (It should be noted, however, that the standard
did permit the use of analytical tools for testability assessment such as SCOAP, STAMP, and WSTA).

As we strive to establish concurrent engineering practices, the interchange between the testability function and
other functions becomes even more important.  To create integrated diagnostic environments, where the
elements of automatic testing, manual testing, training, maintenance aids, and technical information work in
concert with the testability element, we must maximize the reuse of data, information, knowledge, and software.
Complete diagnostic systems include Built-In-Test (BIT), Automatic Test Equipment (ATE), and manual
troubleshooting.  It would be desirable to be able to predict and evaluate the testability of systems at these
levels.

It is not an accident that the P1522 standard contains both the word testability and the word diagnosability.  The
distinction is not always easy to maintain, especially in light of the expansion of the use of the testability term.
Figure 3 shows the basic relationship, with diagnosability being the larger term and encompassing all aspects of
detection, fault localization, and fault identification.  The boundary is fuzzy and often it is not clear when one term
applies and the other does not.  The P1522 standard is meant to encompass both aspects of the test problem.
Because of the long history of the use of the testability
term, we will seldom draw a distinction.  However, the
use of both terms is significant in that testability is not
independent of the diagnostic process.  The writing of
test procedures cannot and should not be done
separately from testability analyses.  To do so, would be
meeting the letter of the requirements without
considering the intent.

TESTABILITY AND DIAGNOSABILITY
METRICS OBJECTIVES

It is the objective of the P1522 standard to provide
notionally correct, inherently useful, and mathematically
precise definitions of testability metrics and
characteristics.  It is expected that the metrics may be

Diagnosability

Testability

Figure 3.  Relationship Between Diagnosability and
Testability



used to either measure the testability of a system, or predict the testability of a system.  Notionally correct means
that the measures are not in conflict with intuitive and historical representations.  Beyond that, the measures
must be either measurable or predictable.  The former may be used in the specification and enforcement of
acquisition clauses concerning factory and field-testing, and maintainability of complex systems.  The latter may
be used in an iterative fashion to improve the factory and field-testing and maintainability of complex systems.
The most useful of all are measures that can be used for both.  Because of the last point, the emphasis will be on
measurable quantities (metrics).

Things that can be enumerated by observation and folded into the defined figures-of-merit will be developed into
metrics.  However, a few measures are inherently useful on the design side even if they are not measurable in
the field and they are defined in a separate section in P1522.  The end purpose is to provide an unambiguous
source for definitions of common and uncommon testability and diagnosability terms such that each individual
encountering the metric can know precisely what that metric measures.

ISSUES

MIL-STD-2165 defined Fraction of Faults Detected (FFD) two ways.  The first is the fraction of all faults detected
by BIT/External Test Equipment (ETE).  The second is the fraction of all detectable faults detected by BIT/ETE
[1].  False alarms were excluded from the definition.  From these two variations grew many others.  As noted in
“Organizational-Level Testability” [12] FFD can be defined as:

• Fraction of all faults detected or detectable by BIT/ETE

• Fraction of all detectable faults detected or detectable with BIT/ETE

• Fraction of all faults detected through the use of defined means.  Defined means implies all means of
detection that have been identified.

• Percentage of all faults automatically detected by BIT/ETE

• Percentage of all faults detectable by BIT/ETE

• Percentage of all faults detectable on-line by BIT/ETE

• Percentage of all faults and out-of-tolerance conditions detectable by BIT/ETE

• Percentage of all faults detectable by any means

One problem with traditional metrics is that they are “overloaded.”  Overloaded in this case means that due to
“common understanding” of the terms, fine variations are not specified.  Consequently, users of the term do not
necessarily know the implications of a precise definition.  Discussions of overloaded terms go on at length, in
part because everyone in the discussion has brought along a lot of mental baggage.  Often, progress is only
made when a neutral term is chosen and the meaning is built from the ground up.  This overloading is so severe,
for example, that there was no definition of FFD in System Test and Diagnosis [2], the authors preferring to use
Non-Detection Percentage (NDP).  FFD is the negative of NDP and is equal to 1–NDP.

Even the number of faults counted in the field require a more precise definition.  The “overloaded” version is
simply a count of all the things that failed.  The quantity of all faults, as usually defined in the industry, is
different.  The quantity of faults detected by BIT/ETE, and the quantity of faults detected exclude the occurrence
of false alarms.  Intermittent faults are classified as a single fault.  Temporary faults, those caused by external
transients of noise, are not classified as faults.



Another aspect of the challenge is that many metrics sound different but are not.  Below are some examples.

• Ambiguity Group Isolation Probabilities is the cumulative probability that any detected fault can be isolated by
BIT or ETE to an ambiguity group of size L or less.

• Fault Isolation Resolution is the cumulative probability that any detected fault can be isolated to an ambiguity
group of a targeted size or less.

• Isolation Level is the ratio of the number of ambiguity groups to the total number of isolatable components.

FUNCTION ffd(model:EDIM.edim; lvl:CEM.level) : REAL;

LOCAL

diag_count : INTEGER;

diags : SET [0:?] OF EDIM.inference

detect_set : SET [0:?] OF CEM.diagnosis := NULL;

END_LOCAL;

diag_count := SIZEOF(QUERY(tmp <* model.model_diagnosis |

tmp.level_of_diagnosis = lvl);

REPEAT I := LOINDEX(model.inference) TO HIINDEX(model.inference);

diags := QUERY(tmp <* model.inference[I].conjuncts |

(TYPEOF(tmp) = 'EDIM.diagnostic_inference'));

diags := diags + QUERY(tmp <* model.inference[i].disjuncts |

IEEE Std 1232.1-1997diags := QUERY(tmp <* diags |

tmp.pos_neg = negative OR

NOT(tmp.diagnostic_assertion = 'Good'));

detect_set := detect_set + QUERY(tmp <* diags.for_diagnosis |

tmp.level_of_diagnosis = lvl);

END_REPEAT;

RETURN(SIZEOF(detect_set) / diag_count);

END_FUNCTION;

Figure 4.  Sample Metric Definition in EXPRESS



• System Operational Isolation Level is the percentage of observed faults that result in isolation to n or fewer
replaceable units.

All of these terms were and are valuable.  The value of these terms will be increased with precise meanings for
each one.

ASSUMPTIONS

The development of a diagnostic capability includes system level analysis.  As such, it is assumed that a system
level approach is undertaken, and those diagnostic strategies and testability criteria have been explicitly
developed or at least structured.  These may be variables in the formulation, but cannot be completely
undefined.  The primary assumptions are twofold and deal with inherent usefulness from prior experience and the
ability to precisely define the term from first principles.  In some cases, we will assume the existence of a
diagnostic model such as one based on the IEEE 1232 series of standards.  Metrics will be derived from the
entities and attributes based on these information models.  In other cases, we will rely on a demonstrated ability
to measure items related to the testing at the design, factory, and field levels concerning the maintainability of
complex systems.  In the latter case, information models will be developed as necessary to define all relevant
entities and attributes.

Each term carries with it a number of additional assumptions (such as single or multiple failure) and is explicitly
dealt with on a term by term basis in the section on metrics and characteristics.

The FFD metric assumes the existence of a diagnostic model that ties tests (especially test outcomes) to
potential faults in the system analyzed.  Within AI-ESTATE, tests, diagnoses, and faults are modeled explicitly in
the common element model.  In addition, AI-ESTATE includes specifications for two diagnostic models—the fault
tree model and the Enhanced Diagnostic Inference Model (EDIM).  Due to its generality, the EDIM was used to
define FFD.

The assumptions used to define FFD are as follows:

• We are interested in the various metrics at a particular level;

• A hierarchical element exists at a particular level;

• No descendant of a hierarchical element is at the same level as that hierarchical element; and

• At this point, we don't care about the ordering of the levels.

As an example, one metric defined using the model is Fractions of Faults Detected (FFD).

From these assumptions and the information models, we can define FFD using the procedural constructs of
EXPRESS.  Specifically, a function (FFD) can be specified as in Figure 4.  In the process of defining this one
metric, several issues were identified.  These issues are discussed in detail in [13].

OTHER APPLICATIONS

Ties to Maintenance Feedback

In 1993, a Project Authorization Request (PAR) was submitted to the IEEE for new standards project related to
specifying information and services for test and maintenance information feedback.  The Test and Maintenance
Information Management Standard (TMIMS) project was approved by the IEEE in early 1994.  The focus of this
project was to define exchange and service standards (similar to AI-ESTATE) which support the test and
diagnostic maturation process.  In 1998, due to a lack of progress, the TMIMS PAR was cancelled.



AI-ESTATE continues to require definition of exchange and service standards related to test and maintenance
information.  In 1998, shortly after the cancellation of the TMIMS PAR, the AI-ESTATE committee decided to
include test and maintenance information in its scope.  The approach will be consistent with AI-ESTATE (i.e., the
definition of information models and EXPRESS-level services derived from traversing the models).  Further, it is
anticipated that the starting point for the new models will be the dynamic context model in IEEE 1232.2.  By
keeping track of the sequence of events during a diagnostic session, much of the historical information is
identified and captured that can be used for later diagnostic maturation.

Ties to Product Descriptions

Through the 1990s, the IEEE has been developing a family of standards under the umbrella of “A Broad Based
Environment for Test” (ABBET) [14], [15].  An early architecture of ABBET, based on information modeling,
presented ABBET as five layers: 1) product description, 2) test requirements/strategy, 3) test methods, 4) test
resources, and 5) instrumentation.  Since then, standards for the “lower layers” of ABBET (i.e., layers 3–5) have
been defined; however, it has long been recognized that the major benefit from standardization will come from
the “upper layers” (i.e., layers 1 and 2).

AI-ESTATE satisfies many of the requirements related to layer two of ABBET (however, AI-ESTATE has never
been considered part of the ABBET family).  Further, a recent proposal for a new information model-based
standard, called the Test Requirements Model (TeRM), will address specific concerns of test requirements [16],
[17].  Standards for the product description layer have always been problematic due to issues related to the
revelation of intellectual property.  With the combination of TeRM, AI-ESTATE, and TMIMS, it is anticipated that
intellectual property can be hidden from information provided in standard form while still supporting the test
engineer fully.

CONCLUSION

Reasoning system technology has progressed to the point where electronic and other complex systems are
employing artificial intelligence as a primary component in meeting system test and verification requirements.
This is giving rise to a proliferation of AI-based design, test, and diagnostic tools.  Unfortunately, the lack of
standard interfaces between these reasoning systems has increased the likelihood of significantly higher product
life-cycle cost.  Such costs arise from redundant engineering efforts during design and test phases, sizeable
investment in special-purpose tools, and loss of system configuration control.

The AI-ESTATE standards promise to facilitate ease in production testing and long-term support of systems, as
well as reducing overall product life-cycle cost.  This will be accomplished by facilitating portability, knowledge
reuse, and sharing of test and diagnostic information among embedded, automatic, and stand-alone test systems
within the broader scope of product design, manufacture, and support.

AI-ESTATE was first conceived in 1988 as a standard for representing expert-system rule bases in the context of
maintenance data collection.  Since that time, AI-ESTATE has evolved to be embodied in three published
standards related to the exchange of diagnostic information and the interaction of diagnostic reasoners within a
test environment.  The three standards have been recommended for inclusion on the US DoD ATS Executive
Agent’s list of standard satisfying requirements for ATS critical interfaces.  In looking to the next generation, AI-
ESTATE is expanding to address issues of testability, diagnosability, maintenance data collection, and test
requirements specification.
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